Subject Index

Congenital Anomalies

2, 4-D 40(4): 287
254-S, a platinum complex 35(1): 73
3-chloro-4-(dichloromethyl)-5-hydroxy-
3-D visualization 36(4): 243
5-fluorouracil 33(1): 77, 34(1): 183
37(4): 337
5-methyltetrahydrofolic acid 32(4): 367, 34(1): 139
anal atresia 33(2): 133
anencephaly 32(2): 125, 40(1): 40
40(3): 175, 40(Suppl): S76
31(3): 141
aneuploidy 34(1): 1
36(4): 235
aneurysm, aortic 32(1): 65
angiotensin converting enzyme (ACE) inhibitor 34(1): 47
37(1): 1
animal testing 32(1): 15
animals 40(Suppl): S54
ankylosis 33(3): 211
anogenital distance 40(Suppl): S94
anomalies 32(2): 91, 35(4): 425
35(1): 25
anomaly in cardiovascular system 31(1): 1, 31(1): 41
31(2): 89, 31(3): 107
anomaly in hand 36(2): 75
anomaly in heart 32(4): 293
anomaly in limb 31(3): 107
anomaly in musculoskeletal system 35(4): 411
anophthalmia 31(1): 41
antabuse 33(3): 197
antibacterial 35(1): 101
anterolateral shift 38(1): 39
antiepileptic drug 32(4): 309
38(4): 367
antineoplastic platinum complexes 35(1): 73
Apert syndrome 40(4): 282
40(2): 108
aqueductal stenosis 31(3): 129, 31(3): 115
arthroplasty 34(4): 321, 36(3): 107

A
abnormality in brain 37(1): 15
abnormality in cardiovascular system 33(4): 363
abnormality in cardiovascular system 36(3): 115
abortion 33(2): 125, 39(4): 223
acetylosamine 35(4): 425
acetylosamine 35(1): 101
acetylosamine 34(2): 89
35(2): 231
acoustic startle response 39(1): 3
acrania 40(1): 40
acrylamide 34(1): 35
activity 32(Suppl): S7
adenohypophysis 31(1): 47
adriamycin 37(1): 21
Aichi Prefectural Colony 33(1): 1
AIDS 40(Suppl): S70
albendazole 35(4): 455
albinism 39(2): 49
alcain blue 32(4): 381
alcohol 33(1): 15
alfacon-I 39(4): 223
alizarin red S 32(4): 381
alkaline single-cell gel electrophoresis 38(4): 375
all-trans retinoic acid 32(2): 117, 33(2): 133
alopecia universalis 39(1): 37
alveoli 31(1): 33
American neurotoxicity studies 32(1): 15
aminocentesis 31(2): 81
amygdala 39(1): 3
amyplasia 34(1): 27
Arnold-Chiari malformation 31(3): 115
ARNT 40(Suppl): S88
aromatase 36(1): 35
arotinoids 32(2): 105
arthrogryposis 33(4): 389
aryl hydrocarbon receptor 40(Suppl): S88
ascertainment 39(4): 253
asphyxiating thoracic dystrophy 33(4): 399
aspirin 35(1): 93
associated congenital anomalies 33(4): 345
ataxia 40(2): 99
atlas 38(1): 97
atrioventricular cushion 35(2): 207
atrioventricular septal defect 40(2): 117
aurintricarboxylic acid 34(4): 345
Australia 40(Suppl): S76
autopsy 35(1): 25
autosomal recessive inheritance 33(4): 379
axial skeleton 32(2): 91
axis 38(1): 67
Ay gene 32(4): 373
36(1): 21
azosemide 37(3): 241

B
background control data 37(1): 47
baseline birth prevalence 39(4): 253
behavioral abnormality 35(4): 467
behavioral characteristics 34(4): 311
behavioral dysfunction 32(Suppl): S43
behavioral teratogy 38(2): 117, 32(2): 143
32(Suppl): S32, 32(Suppl): S7
35(2): 223, 35(4): 435
Behavioral Teratology Meeting 38(2): 117
Behavioral Teratology Society 32(Suppl): S7
behavioral testing 32(1): 15
benzimidazoles 35(4): 455
Biel water maze 38(2): 117
bilirubin 31(4): 297
biological defense mechanism 35(1): 1
birth defects 33(3): 197, 33(3): 203
36(2): 57, 39(2): 59
40(2): 133, 40(Suppl): S76
40(4): 269
bis(tri-n-butyltin)oxide 37(3): 251
bis-diamine 31(1): 1, 32(4): 347

C
C57BL/6 36(1): 29
CA repeat polymorphism 37(4): 345
34(1): 53
calcification 37(3): 241
calcium channel 40(2): 99
campomelic syndrome 33(1): 45
carbamazepine 32(4): 309, 36(3): 115
38(4): 367
cardiac anomalies 39(4): 281
cardiac development 32(1): 65
cardiomyocytes 40(Suppl): S8
cardiomyopathy 33(1): 63
cardiomyopathy, hypertrophic 39(3): 107
cardiomyopathy, hypertrophic 33(1): 45
cardiosplenic syndrome 40(2): 117
carnitine 36(2): 65
carnivore 32(2): 117
carpal bones 35(2): 189
carpal coalition 33(3): 211
carrier diagnosis 37(4): 345
carry-over effects 32(Suppl): S43
cartilage 32(4): 381
38(1): 39
cartilage skeleton 35(1): 101
33(2): 125, 34(1): 27
34(1): 107, 34(1): 175
35(1): 87, 35(3): 285
case-control pair analysis 39(3): 117

catecholamine 34(4): 353

36(1): 7

cell migration 35(2): 215

cell replacement 35(1): 1

cell sorting model 40(Suppl): S2

central nervous system 40(1): 1

centromere 40(3): 162

cephalogram 39(4): 243

cerebral cortex 40(1): 1

cervical vertebral anomaly 38(1): 67

cesarean section data 37(1): 47

chaperone 38(1): 9

chelating agent 35(4): 435

chemicals 40(Suppl): S54

Chernobyl 35(1): 25

Chiari malformation 35(1): 15

chick 33(2): 105, 35(2): 207

chick embryos 31(1): 1, 31(4): 315

35(3): 275, 36(3): 115

38(4): 367

chick-quail chimera 33(2): 105

China 40(Suppl): S76

Chinese hamsters 34(1): 97,

34(2): 162

chlorambucil 31(3): 141, 37(1): 31

3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone 39(1)

: 31, 39(4): 261

chondrogenesis 32(4): 381, 35(1): 55

40(Suppl): S2

chromosomal errors 34(1): 97

chromosome aberration 34(4): 303, 34(1): 1

chromosome analysis 32(1): 31, 40(2): 131

chronic idiopathic intestinal pseudo-obstruction syndrome 35(1): 87

cisplatin 35(1): 73

cleft hand 33(3): 187, 36(2): 75

40(Suppl): S34

cleft lip 31(2): 95, 32(4): 293

33(4): 345, 35(2): 169

35(4): 425, 40(Suppl): S76

cleft palate 31(2): 81, 31(4): 323

congenital complete heart block 32(4): 301

congenital contractual arachnactyly

33(1): 85

congenital hydrocephalus 34(4): 303, 35(1): 15

congenital infection 37(1): 1

40(4): 259

congenital toxoplasmosis 35(2): 151

conotruncal cushion 35(2): 207, 35(2): 215

conotruncal defect 32(1): 65

constriction ring syndrome 34(1): 107

consultation system 33(4): 337

copper 35(4): 435

coronary arteries, anomalous 40(3): 157

corpus callosum 34(4): 321, 36(3): 107
corpus callosum, hypoplastic
35(3): 285

corrosion casts
33(4): 379
cortisone acetate
counting principles
35(3): 293, 36(4): 227
cranial base
craniofacial anomalies
33(2): 157
craniofacial dysmorphia
35(1): 73
cranioschisis
craniosynostosis
37(1): 31
37(1): 31
culture
34(3): 329
cyclophosphamide
cyclopia
cyclopia
31(1): 123
39(4): 209
cyst formation
31(4): 285
cystic disease
cystic hygroma
33(1): 63, 33(2): 125
34(1): 27
cytogenetics
40(2): 131
cytomegalovirus
cytotoxicity
39(4): 261, 40(Suppl): S8
debt servicing
40(Suppl): S70
decidual cell response
decidualization
34(1): 157
deltaphalanx
36(2): 75
demethylbenz(a)anthracene
dendrite
dermatoglyphics
35(2): 199
dehydrosulphobetrol
40(Suppl): S54
developing countries
development
32(4): 279, 32(Suppl): S43
developmental abnormalities
developmental brain defects
developmental delay
developmental stages
developmental study
developmental toxicity
down syndrome
double-outlet right ventricle
drug testing regulations
drug use
Duchenne muscular dystrophy
ductus arteriosus
duplication
duplication anomalies
duplication of hindlimb
dwarfism
dysmorphology
dystrophin gene
38(1): 97
40(4): 287
40(Suppl): S108
40(4): 287
31(3): 157
34(1): 71
32(Suppl): S31
33(2): 147
31(1): 13, 31(1): 33
32(1): 31
32(4): 293
38(3): 251
32(Suppl): S108
37(4): 337
39(4): 295
39(1): 31, 40(Suppl): S8
39(4): 281
33(3): 187
40(Suppl): S88
40(1): 8
39(1): 31
40(1): 1
35(4): 447
33(3): 197
32(3): 179
38(4): 375
34(1): 65
34(1): 65
33(2): 147, 35(1): 1
32(2): 91, 32(4): 381
36(4): 263, 37(3): 241
35(2): 189
38(4): 267, 40(2): 112
40(2): 117
32(1): 15
40(4): 297
32(3): 179, 37(4): 345
37(2): 149
35(3): 275
37(1): 21
40(1): 32
39(4): 243
37(4): 345
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s):</th>
<th>Page(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>fetal movement</td>
<td>38(3): 259</td>
<td></td>
</tr>
<tr>
<td>fetal skin biopsy</td>
<td>39(2): 49</td>
<td></td>
</tr>
<tr>
<td>fetal surgery</td>
<td>31(2): 95, 36(3): 107</td>
<td></td>
</tr>
<tr>
<td>fibroblast growth factor receptor 2</td>
<td>40(4): 282</td>
<td></td>
</tr>
<tr>
<td>fibroblast growth factor receptor 3</td>
<td>35(2): 231, 36(4): 257</td>
<td></td>
</tr>
<tr>
<td>fibronectin</td>
<td>38(1): 57</td>
<td></td>
</tr>
<tr>
<td>fingers</td>
<td>34(1): 107</td>
<td></td>
</tr>
<tr>
<td>flexion deformity</td>
<td>33(4): 389</td>
<td></td>
</tr>
<tr>
<td>flow cytometry</td>
<td>35(2): 177</td>
<td></td>
</tr>
<tr>
<td>follicle-stimulating hormone</td>
<td>39(4): 209</td>
<td></td>
</tr>
<tr>
<td>follow-up</td>
<td>40(2): 112</td>
<td></td>
</tr>
<tr>
<td>food restriction</td>
<td>33(4): 363</td>
<td></td>
</tr>
<tr>
<td>foot anomaly</td>
<td>34(1): 175</td>
<td></td>
</tr>
<tr>
<td>foot surgery</td>
<td>33(4): 357</td>
<td></td>
</tr>
<tr>
<td>foramen magnum</td>
<td>34(2): 89</td>
<td></td>
</tr>
<tr>
<td>forelimb</td>
<td>35(1): 101</td>
<td></td>
</tr>
<tr>
<td>fractionator</td>
<td>40(1): 1</td>
<td></td>
</tr>
<tr>
<td>Freeman-Sheldon syndrome</td>
<td>33(4): 389</td>
<td></td>
</tr>
<tr>
<td>frontal proboscis</td>
<td>33(2): 157</td>
<td></td>
</tr>
<tr>
<td>full term</td>
<td>36(4): 263</td>
<td></td>
</tr>
<tr>
<td>fused pulmonary lobes (fpl)</td>
<td>33(4): 379</td>
<td></td>
</tr>
<tr>
<td>fused ribs</td>
<td>36(2): 83</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gamma rays</td>
<td>38(4): 375, 33(2): 115</td>
<td></td>
</tr>
<tr>
<td>Gaucher disease</td>
<td>32(2): 135</td>
<td></td>
</tr>
<tr>
<td>gene function</td>
<td>40(4): 251</td>
<td></td>
</tr>
<tr>
<td>gene mutations</td>
<td>40(4): 282</td>
<td></td>
</tr>
<tr>
<td>genetic counselling</td>
<td>33(4): 337</td>
<td></td>
</tr>
<tr>
<td>genetic diseases</td>
<td>34(1): 161, 38(3): 251</td>
<td></td>
</tr>
<tr>
<td>genetic instability</td>
<td>40(Suppl): S54</td>
<td></td>
</tr>
<tr>
<td>genetics</td>
<td>38(4): 361</td>
<td></td>
</tr>
<tr>
<td>genomic imprinting</td>
<td>33(1): 63</td>
<td></td>
</tr>
<tr>
<td>geographical variation</td>
<td>34(1): 131</td>
<td></td>
</tr>
<tr>
<td>germ-line mutation</td>
<td>36(1): 29</td>
<td></td>
</tr>
<tr>
<td>Gli3</td>
<td>40(Suppl): 825</td>
<td></td>
</tr>
<tr>
<td>gliarial nodule, heterotopic</td>
<td>32(1): 77</td>
<td></td>
</tr>
<tr>
<td>glossary</td>
<td>37(2): 165</td>
<td></td>
</tr>
<tr>
<td>gonad</td>
<td>32(3): 167</td>
<td></td>
</tr>
<tr>
<td>gonadotrophic hormones</td>
<td>40(3): 162</td>
<td></td>
</tr>
<tr>
<td>gonadotropin releasing hormone</td>
<td>38(1): 81</td>
<td></td>
</tr>
<tr>
<td>green fluorescent protein</td>
<td>40(Suppl): S8</td>
<td></td>
</tr>
<tr>
<td>Grigec cephalopolysyndactyly syndrome</td>
<td>40(Suppl): S25</td>
<td></td>
</tr>
<tr>
<td>Griscelli disease</td>
<td>39(3): 107</td>
<td></td>
</tr>
<tr>
<td>growth</td>
<td>39(4): 243</td>
<td></td>
</tr>
<tr>
<td>growth factor</td>
<td>38(1): 25</td>
<td></td>
</tr>
<tr>
<td>growth hormone</td>
<td>34(2): 89</td>
<td></td>
</tr>
<tr>
<td>growth inhibition assay</td>
<td>31(4): 329</td>
<td></td>
</tr>
<tr>
<td>growth pattern</td>
<td>34(2): 89</td>
<td></td>
</tr>
<tr>
<td>guidelines</td>
<td>32(Suppl): S69, 32(Suppl): S79</td>
<td></td>
</tr>
<tr>
<td>Gunn rats</td>
<td>31(4): 297</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hand anomaly</td>
<td>35(4): 447, 36(2): 75</td>
<td></td>
</tr>
<tr>
<td>harmonization</td>
<td>32(Suppl): S91, 32(Suppl): S111</td>
<td></td>
</tr>
<tr>
<td>HbA1</td>
<td>32(4): 293</td>
<td></td>
</tr>
<tr>
<td>head structure</td>
<td>40(4): 251</td>
<td></td>
</tr>
<tr>
<td>heart anomaly</td>
<td>31(3): 107</td>
<td></td>
</tr>
<tr>
<td>heart disease, congenital</td>
<td>40(2): 112</td>
<td></td>
</tr>
<tr>
<td>heart tube</td>
<td>31(4): 315</td>
<td></td>
</tr>
<tr>
<td>heart, enlarged</td>
<td>33(1): 63</td>
<td></td>
</tr>
<tr>
<td>heat shock protein</td>
<td>38(1): 9</td>
<td></td>
</tr>
<tr>
<td>hemimegalencephaly</td>
<td>33(4): 327</td>
<td></td>
</tr>
</tbody>
</table>
hemodynamic alteration
hepatitis C virus
HEPM cells
herbicides
heterotaxy
heterotopia
heterozygotes
hgn/hgn
high mortality
hip joint
hippocampus
histological changes
histopathology
historical data
history
history of teratology
HIV
HNK-1
holoprosencephaly
hormonal stimulation
housing condition
human conceptus
human embryos
human exposure
human organogenesis
humans
humero-radio-ulnar synostosis
Hungary
Hunter disease
hydrocephaly
hydrocephalus, experimental
hydrocortisone
hydrocephrosis
hydronephrosis
hydrops fetalis
hydroxyurea
hyperglycemia
hyperkeratosis
hyperthermia
hyperthermia, maternal
hypochondroplasia
hypodactyly
hypogonadism
hypogonadal mutant rat
hypoplastic thumb
hypoplasia
hypoxia induction factor 1-α
ichthyosis
IDDM
IL-2
immune system, fetal
immunohistochemistry
implantation
implantation failure
imprinting
in vitro
in vitro differentiation
in vitro organ culture
in vitro screening
in vitro study
in vitro testing
in vitro tests
in vitro
in vitro testing
inborn errors of metabolism
incidence of anomalies
Indonesia
infant mortality 39(4): 253
infant mortality rate 40(Suppl): S70
infections 40(Suppl): S42
infectiveness of oocysts 35(2): 151
Infrogen 39(4): 223
inherited metabolic disease 32(2): 135
inner ear 35(4): 467
interchromosomal effects 34(1): 97
interferon 39(4): 223
international 32(Suppl): S69
international cooperation 38(4): 359
international joint study 35(1): 25
international regulation 32(Suppl): S67
intestinal atresia 40(3): 175
intestinal duplication 34(1): 27
intracranial structures 36(4): 243
intrauterine death 31(1): 67
inversion 34(1): 97
ionizing radiaton 40(2): 108
islet-1 40(1): 14

J
Japan 40(Suppl): S76
Japan Association of Obstetricians and Gynecologists Program 40(Suppl): S76
Japanese glossary 38(2): 153
Japanese house mice 35(3): 305
Japanese Segment II and III 32(1): 15
jaundice 31(4): 297
jaw development 31(2): 95
Jeune syndrome 33(4): 399
joint 33(3): 211

K
Kanazawa Medical University 33(4): 345
kidney 33(1): 5
kidney development 40(4): 275
kidney, fetal 40(4): 287
Klippel-Feil syndrome 31(3): 107
Korea-Japan Basic Scientific Promotion 40(1): 46
Korean Congenital Anomalies Society 38(4): 359
Kyoto Collection of Human Embryos 31(1): 67

L
laboratory animals 37(2): 165, 40(4): 259
laboratory mammals 38(2): 153
laboratory mice 35(3): 305
labyrinthectomy 35(4): 467
lactational immunity 40(Suppl): S42
lambs 39(2): 75
laser 36(3): 107
learner mouse 40(2): 99
learning 32(Suppl): S7
learning ability 33(1): 15
learning impairment 34(1): 13
left-right sidedness 32(4): 347
lens 36(1): 7
lens defects 32(1): 53
lens fiber vacutilation 36(1): 7
lethal multiple pterygium syndrome 33(2): 125, 34(1): 27
leupeptin 31(1): 41
leuprolide acetate 38(1): 81
life-span 32(Suppl): S43
limb deduction defects 40(Suppl): S20
limb development 35(1): 55
limb duplication 37(1): 21
limb morphogenesis 40(Suppl): S25
lobation 33(4): 379
local differences 35(4): 411
longitudinal assessment 32(Suppl): S43
luteinizing hormone 39(4): 209
lysosomal storage disease 32(2): 135

M
macular mouse 34(4): 353
magnetic cell sorting 36(4): 235
magnetic resonance image 33(2): 167
malaria 40(Suppl): S70
male toxicity study 35(2): 177
male-mediated teratogenesis 38(1): 1
<table>
<thead>
<tr>
<th>Term</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>malformation in CNS</td>
<td>38(1): 39</td>
</tr>
<tr>
<td>malformation syndromes</td>
<td>33(4): 327</td>
</tr>
<tr>
<td>malformation, anorectal</td>
<td>38(3): 251</td>
</tr>
<tr>
<td>malformed embryos</td>
<td>33(2): 133</td>
</tr>
<tr>
<td>malnutrition</td>
<td>31(1): 67</td>
</tr>
<tr>
<td>Marfan syndrome</td>
<td>34(4): 353, 40(Suppl): S70</td>
</tr>
<tr>
<td>Marshall-Smith syndrome</td>
<td>33(1): 85</td>
</tr>
<tr>
<td>maternal blood</td>
<td>35(3): 285</td>
</tr>
<tr>
<td>maternal hyperphenylalaninemia</td>
<td>36(4): 235</td>
</tr>
<tr>
<td>maternal hyperthermia</td>
<td>35(2): 199</td>
</tr>
<tr>
<td>maxilocraniofacial morphology</td>
<td>33(4): 363, 37(3): 251</td>
</tr>
<tr>
<td>maxillofacial growth</td>
<td>40(4): 287</td>
</tr>
<tr>
<td>mean age at death</td>
<td>39(4): 243</td>
</tr>
<tr>
<td>medicinal products</td>
<td>34(1): 131</td>
</tr>
<tr>
<td>meiosis</td>
<td>32(Suppl): S69</td>
</tr>
<tr>
<td>memory</td>
<td>34(2): 169</td>
</tr>
<tr>
<td>meninges</td>
<td>35(4): 353</td>
</tr>
<tr>
<td>Menkes disease</td>
<td>34(1): 131</td>
</tr>
<tr>
<td>Menkes kinky hair syndrome</td>
<td>35(4): 435</td>
</tr>
<tr>
<td>menstrual cycle</td>
<td>38(1): 209</td>
</tr>
<tr>
<td>mental retardation</td>
<td>39(4): 209</td>
</tr>
<tr>
<td>mentally retarded children</td>
<td>40(2): 108</td>
</tr>
<tr>
<td>mesenchymal cells, heart</td>
<td>34(4): 311</td>
</tr>
<tr>
<td>mesenchyme</td>
<td>35(2): 207</td>
</tr>
<tr>
<td>metacognition</td>
<td>36(4): 227</td>
</tr>
<tr>
<td>methamphetamine</td>
<td>34(4): 311</td>
</tr>
<tr>
<td>methodology</td>
<td>37(1): 21</td>
</tr>
<tr>
<td>methyloxazolmethanol acetate</td>
<td>31(3): 153</td>
</tr>
<tr>
<td>methylnitrosourea</td>
<td>32(2): 143, 32(4): 323</td>
</tr>
<tr>
<td>methylphenobarbital</td>
<td>34(1): 13, 35(1): 113</td>
</tr>
<tr>
<td>5-methyltetrahydrofolic acid mice</td>
<td>34(1): 65</td>
</tr>
<tr>
<td>microencephaly</td>
<td>32(1): 143, 33(3): 203</td>
</tr>
<tr>
<td>microcephaly</td>
<td>33(2): 279</td>
</tr>
<tr>
<td>micrognathia</td>
<td>34(2): 105, 39(1): 31</td>
</tr>
<tr>
<td>micromass culture</td>
<td>32(4): 279</td>
</tr>
<tr>
<td>micromass in vitro test</td>
<td>32(2): 153</td>
</tr>
<tr>
<td>microphthamialia</td>
<td>37(1): 21</td>
</tr>
<tr>
<td>microtia</td>
<td>38(1): 209</td>
</tr>
<tr>
<td>midbrain</td>
<td>39(4): 295</td>
</tr>
<tr>
<td>midkine</td>
<td>40(1): 32</td>
</tr>
<tr>
<td>midline</td>
<td>35(2): 207</td>
</tr>
<tr>
<td>migration disorder</td>
<td>35(1): 43</td>
</tr>
<tr>
<td>migration, impaired</td>
<td>35(1): 43</td>
</tr>
<tr>
<td>miniplate</td>
<td>33(4): 357</td>
</tr>
<tr>
<td>mirror movements</td>
<td>32(1): 43</td>
</tr>
<tr>
<td>misdiagnosis</td>
<td>39(4): 295</td>
</tr>
<tr>
<td>Miyagi Prefecture</td>
<td>34(4): 303</td>
</tr>
<tr>
<td>molecular genetics</td>
<td>34(4): 425</td>
</tr>
<tr>
<td>molecular marker</td>
<td>34(4): 303</td>
</tr>
<tr>
<td>molecular mechanism</td>
<td>40(Suppl): S8</td>
</tr>
<tr>
<td>monitoring</td>
<td>32(4): 279</td>
</tr>
<tr>
<td>monkeys</td>
<td>40(4): 269</td>
</tr>
<tr>
<td>mortality</td>
<td>34(1): 13</td>
</tr>
<tr>
<td>motor neurons</td>
<td>34(1): 131</td>
</tr>
<tr>
<td>mouse embryo culture</td>
<td>32(1): 43</td>
</tr>
<tr>
<td>mouse embryos</td>
<td>32(1): 31</td>
</tr>
<tr>
<td>mouse fetuses</td>
<td>37(1): 31</td>
</tr>
<tr>
<td>mouse models</td>
<td>39(3): 107</td>
</tr>
<tr>
<td>movement, restrained</td>
<td>38(3): 259</td>
</tr>
<tr>
<td>MRI</td>
<td>33(2): 167</td>
</tr>
<tr>
<td>MTT assay</td>
<td>35(4): 477</td>
</tr>
</tbody>
</table>
mucolipidosis 32(2): 135
multi-site closure model 40(2): 93
multiple exposures 32(Suppl): S21
multiple pterygium syndrome 35(1): 87
mumps virus 31(3): 115, 37(2): 157
Murakami, Ujihiro
mus musculus molossinus
muscle aplasia 33(4): 389
muscles, body wall 33(2): 105
muscular dystrophy 32(3): 179, 37(4): 345
mutagens 38(1): 1
mutant 32(3): 167
mutant mice 31(1): 13, 35(4): 467
MX 35(2): 231
myleran 31(1): 23
myogenic cells 33(3): 187
myosin 39(3): 107
myxovirus 31(3): 115, 31(3): 129
35(1): 15
neuronal migration 40(2): 108
neuropathology 40(1): 32
neurotoxicity 39(1): 13
neurotoxicology 32(Suppl): S31,
32(Suppl): S43
neurotransmitters 34(1): 13, 32(4): 323
neurulation 34(1): 113
New Zealand 40(Suppl): S76
newborns 32(4): 293, 35(2): 189
NIDDM 31(1): 13, 31(1): 33
Nishimura, Hideo 36(1): 1, 36(2): 53
nitrobenzene 35(4): 477
no-effect dose level 40(Suppl): S121
NOAEL 37(3): 251
nomenclature 37(2): 165, 38(2): 153
non-obese diabetic mice 31(1): 23
nondisjunction 34(1): 1, 40(3): 162
34(1): 97
nonylphenol 40(Suppl): S121
normal development 36(1): 21
notochord 33(2): 105

N
37(4): 337
N-phenylimide 35(1): 123
nail dysplasia 39(1): 37
NC-cob mouse fetuses 35(3): 293, 36(4): 227
near term fetuses 34(1): 71
necrosis 34(4): 345
negative geotaxis 32(2): 143
neostriatal monoamines 39(1): 13
nestin 40(1): 14
34(1): 107
neural deficit 32(1): 43
40(2): 93, 40(3): 175
34(1): 113, 36(2): 65
40(4): 259
neurobehavioral evaluation 34(4): 329
neurobehavioral toxicity 38(2): 117
neurocutaneous syndrome 33(4): 327
neuroectoderm 31(1): 23
neurofibromatosis 33(4): 327
neurogenesis 32(Suppl): S55
neurological disorders 33(1): 1
occipital bleb 37(1): 31
occlusion 35(2): 169
olfactory bulb 36(3): 107
omphalocele 33(2): 147
online journal 38(1): 97
oocytes 34(1): 1, 40(3): 162
open eyelid 36(2): 65, 36(4): 227
open eyelid malformation 35(3): 293
open field test 38(2): 117, 32(2): 143
35(2): 223
operator discrimination learning 34(1): 13
organ culture 35(1): 93, 35(1): 101
40(1): 24
organizer 40(4): 251
organogenesis 33(2): 115
organogenic embryos 34(1): 35
orthodontic treatment 39(4): 243
ossification 32(2): 91, 32(4): 381
ossification, order 35(2): 189
osteochondrodysplasia 34(2): 89
ovary 32(3): 167
overgrowth 33(1): 63
P

pachygyria 40(1): 32
palatal slits 32(4): 373, 33(2): 147
35(1): 133
34(1): 183, 35(1): 93
36(1): 21, 38(1): 87
39(4): 261
pancreas, short 40(3): 175
papillae 32(2): 125
parainfluenza virus 31(3): 129, 35(1): 15
PAS domain 40(Suppl): S88
paternal germ cells 34(1): 35
38(2): 143
pattern formation 40(Suppl): S2
PCR 32(3): 179, 34(1): 161
37(4): 345
PCR in single cells 38(4): 361
Pdn/Pdn 34(4): 321, 36(3): 107
40(Suppl): S25
pectoral muscle absence 34(1): 175
personal computer 33(4): 337
penicillin G 39(4): 267
penicillin V 39(4): 267
perinatal period 34(4): 329
periventricular nucleus 36(1): 35
peroxisome assembly factor-1 35(1): 43
peroxisomes 35(1): 43
persistent common atrioventricular canal
33(1): 31
persistent truncus arteriosus
31(1): 1, 33(1): 31
39(4): 281
pharmaceutical drugs 31(3): 157
pharmacokinetics 32(4): 357, 32(Suppl): S31
32(Suppl): S99
phenobarbital 32(1): 65
phenotype analysis 40(4): 282
phenylalanine 34(4): 353, 35(2): 199
pigs 31(4): 323
pinnal fusion 35(3): 293
pituitary gland 31(1): 47
placenta 40(Suppl): S88
plasmalogen 35(1): 43
plasticity in neurons 32(4): 323
platinum complexes 35(1): 73
pleural diaphragm 38(2): 143
pleuroperitoneal canal 39(2): 75, 38(2): 143
pneumotachograph 33(4): 399
pollutants 32(Suppl): S21
polycystic kidneys 33(1): 45
polycystic ovaries 36(1): 35
polymicrogyria 35(1): 43
polymorphism 37(4): 345
polysplenia 40(3): 175
post-neurulation 31(3): 141
potentiation 32(1): 65
Potter syndrome 33(1): 45
precocious division 40(3): 162
preconception exposure 38(1): 1
prediction model 40(Suppl): S8
prednisolone 35(1): 133
37(1): 15, 39(3): 117
40(Suppl): S20, 40(4): 297
pregnancy outcome 38(1): 81
preimplantation 38(4): 375
preimplantation diagnosis 38(4): 361
preimplantation embryos 34(1): 35, 36(2): 83
37(1): 21
prenatal diagnosis 32(2): 135, 32(3): 179
34(1): 161, 36(4): 235
39(2): 49
prenatal ethanol exposure 40(Suppl): S42
prenatal exposure 40(Suppl): S94
prenatal toxicology 32(2): 91, 35(4): 455
preoptic area 36(1): 35
prepulse inhibition 39(1): 3
prevalence 34(1): 131
preventive methods 35(2): 151
primidone 32(4): 309
proboscis 33(2): 157
progesterone 39(4): 209
proliferation 38(1): 25
protease inhibitor 31(1): 41
protective effect 36(2): 65
pseudopregnancy 40(1): 8
pterygium 40(Suppl): S108
34(1): 27
pterygium syndrome 33(2): 125
Purkinje cells 40(1): 1, 40(2): 99
pyrimethamine 31(4): 323, 32(4): 357
Q
quails 33(2): 105

R
rabbits 31(3): 153, 35(1): 123
38(2): 153
33(1): 15
33(3): 187
34(1): 13
33(2): 115, 35(1): 1
40(Suppl): S54
40(2): 108
40(2): 108
35(3): 275
39(2): 59
35(4): 447
35(2): 151
3
9(1): 37
32(2): 91
31(1): 41, 31(2): 81
31(4): 305, 32(1): 43
32(2): 105, 32(2): 143
32(3): 167, 32(4): 323
32(4): 247, 32(4): 357
32(4): 367, 32(4): 381
33(1): 31, 33(2): 143
33(2): 147, 33(2): 167
34(1): 113, 35(1): 1
35(1): 73, 35(1): 113
35(1): 123, 35(1): 133
35(2): 177, 35(2): 223
35(4): 455, 35(4): 477
38(2): 143, 38(2): 153
39(1): 31, 39(2): 75
40(1): 8, 40(1): 14
40(3): 157, 40(Suppl):
S42 40(Suppl):
S94, 40(Suppl): S108,
40(4): 275, 40(4): 287
reaction-diffusion model 40(Suppl): S2
receptor 36(4): 227, 36(4): 257
40(1): 24, 40(4): 275
39(4): 209
receptor, luteinizing hormone 32(Suppl): S7
reflex 32(Suppl): S91, 32(Suppl):
S79
renal cystic disease 33(1): 5
repair 35(1): 1
repair of anomalies 31(2): 81
repair, intrauterine 31(2): 95
reproduction 32(Suppl): S67,
32(Suppl): S91
reproductive dysfunction 39(4): 295
reproductive endocrinology 39(4): 209
reproductive toxicity 32(1): 1, 32(1): 15
32(Suppl): S69,
32(Suppl): S79
32(Suppl): S99,
32(Suppl): S111
35(2): 177, 37(1): 47
40(1): 8, 40(Suppl): S108
40(Suppl): S121,
31(3): 157
reproductive toxicology 35(4): 477
respiratory distress 33(4): 399
restriction fragment length polymorphism
37(4): 345
retina 32(1): 53
retinoic acid 32(2): 117, 33(2): 133
retinoic acid receptors 35(1): 55
retinoid X receptors 35(1): 55
rhesus monkeys 39(4): 223
rib defect 33(2): 105
ribs 32(2): 91
ribs, wavy 37(3): 241
risk factors 40(Suppl): S20
rolling mouse Nagoya 40(2): 99
rugae 34(1): 71, 38(1): 87

S
254-S, a platinum complex 35(1): 73
S-53482 35(1): 123
sacrifice time 32(Suppl): S55
salicylates 35(1): 93
Schardein, James L. 40(2): 133
screening methods 32(1): 15
Seckel-like syndrome 40(1): 32
segment II teratology study 32(2): 117
segregation errors 34(1): 1
Semipalatinsk 35(1): 25
sensitive period 32(4): 373, 33(2): 115
33(2): 147, 35(1): 123
sensory function 32(Suppl): S7
serotonin 32(4): 323
sex difference 35(2): 189
sex differentiation 36(1): 35
shuttlebox 35(2): 223
side effects 34(2): 89
Singapore 36(2): 57
single dose 34(1): 65
single dosing 35(1): 73
skeletal maturation, advanced 35(3): 285
skeleton 36(4): 263
skeleton, axial 32(4): 381, 38(1): 39
skin disease, inherited 39(2): 49
skull 34(1): 53
SLE in neonates 32(4): 301
selective breeding 35(2): 223
small thorax 33(4): 399
sonic hedgehog 40(2): 123, 40(Suppl): S25
Southern blotting 34(1): 161
species differences 32(2): 105, 35(1): 123
specific absorption rate 35(3): 275
sperm motility 35(4): 477
sperm number 35(2): 177
sperm production 40(Suppl): S94
sperm quality analyzer 35(4): 477
teratogen tests 32(2): 105
teratogenesis 31(4): 323, 32(4): 367
33(3): 203, 35(1): 55
35(3): 305, 35(4): 455
38(1): 1
40(Suppl): S20
spinal cord 35(2): 177, 35(4): 477
spinal canal 34(2): 89
spine 32(4): 381
spontaneous malformations 36(1): 29, 36(2): 83
spontaneous malformations in heart 31(4): 315
spontaneous teratogenesis 38(1): 1
teratogenic effects 39(2): 59
teratogenicity 31(3): 153, 32(1): 31
32(4): 373, 33(1): 77
33(3): 187, 34(1): 113
35(1): 73, 35(1): 123
35(1): 133, 37(3): 251
40(Suppl): S2, 40(4): 297
spinal cord 35(2): 177, 35(4): 477
spinal canal 34(2): 89
spine 32(4): 381
spontaneous malformations 36(1): 29, 36(2): 83
spontaneous malformations in heart 31(4): 315
spontaneous teratogenesis 38(1): 1
teratogenicity testing 32(Suppl): S99
teratological sensitivity 34(1): 183
teratology 32(Suppl): S31,
32(Suppl): S55
33(3): 197, 33(4): 363
35(2): 189, 38(1): 97
SS-A, antibody 32(4): 301
SS-B, antibody 32(4): 301
step-osteotomy 33(4): 357
sterilization 40(1): 1
sternebrae 32(2): 91
supracardinal vein, persistent 37(2): 149
surface righting 32(2): 143
susceptibility 38(1): 1
teratogenesis testing 32(Suppl): S99
teratological sensitivity 34(1): 183
teratology 32(Suppl): S31,
32(Suppl): S55
33(3): 197, 33(4): 363
35(2): 189, 38(1): 97
symbrachydactyly 40(Suppl): S34, 34(1): 175
symphalangism 33(3): 211
synergy 32(1): 65
synophthalmia 40(2): 123
synostosis 34(1): 107, 35(4): 447
systemic lupus erythematosus 32(4): 301
T
TGF β2 40(Suppl): S2
telencephalon 35(4): 455
telecommunication 39(2): 59
telencephalon 35(4): 455
tenascin 38(1): 57
tetralogy of Fallot 33(1): 31
tetraplasia 31(4): 329, 36(3): 115
telencephalon 35(4): 455
Teddal 32(1): 65
teratogen 31(4): 329, 36(3): 115
thorax
Thp
3-D visualization
threshold
thumb
thymus, hypoplasia
tight junction
tissue binding pattern
tobacco
tongue
tottering mouse

Tottori Monitoring System for Birth

Defects

toxicity
toxicokinetics
toxicology
toxoplasma
tracheal stenosis
transgenerational effects
transgenic mice
transplacental carcinogenesis
transplacental infection
transposition of the great arteries

transverse deficiency
Treacher Collins syndrome
treatment
triamicinolone acetonide
tributyltin
triethylentetramine dihydrochloride

triphalangeal thumb
triphalangism
triphenyltin
trisomy 13
trisomy 21
TRPM-2
trypan blue
tuberculous sclerosis
TUNEL
Turner syndrome

two-generation reproductive study

tyrosine
tyrosine hydroxylase
tyrosine kinase

U

under-5 mortality rate
undifferentiated cells
uninephrectomized mothers
United Arab Emirates
upper airway obstruction
ureteric dilatation
urethane
urogenital malformation
Usher

V

valproate
valproic acid
variability in development
variant pattern
variants
variation
vasoactive intestinal polypeptide

VEGF
vena cava, inferior
ventricular septal defect
vertebrae
vertebral arch
very long chain fatty acid
vestibular dysfunction
VIP
viral infection
viscera
vitamin A
von Hippel-Lindau disease

W

Walsh, David Antony
whole embryonic culture

Wiedemann-Beckwith syndrome
wild-derived strain of Japanese house mice
wound healing
WWW

X

Xlim-1

Y

Yamamura, Hideki
yellow KK mice
<table>
<thead>
<tr>
<th>Z</th>
<th>35(1): 43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zellweger syndrome</td>
<td>35(1): 43</td>
</tr>
<tr>
<td>ZO-1</td>
<td>37(2): 157</td>
</tr>
</tbody>
</table>
Author Index

Congenital Anomalies

<table>
<thead>
<tr>
<th>A</th>
<th>Insights from AhR and ARNT Gene Knockout Studies Regarding Responses to TCDD and Regulation of Normal Embryonic Development. 40(Suppl): S88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdulrazzaq, Y.M.</td>
<td>40(4): 259</td>
</tr>
<tr>
<td>Abu-Musa, Antoine</td>
<td>31(3): 141</td>
</tr>
<tr>
<td>Adachi, Ritsuko</td>
<td>34(1): 161</td>
</tr>
<tr>
<td>Akaike, Masashi</td>
<td>37(1): 47</td>
</tr>
<tr>
<td>Akimoto, Naotaka</td>
<td>31(1): 47</td>
</tr>
<tr>
<td>Al Hosani, H.</td>
<td>39(4): 253</td>
</tr>
<tr>
<td>Ando, Masahiko</td>
<td>40(2): 117</td>
</tr>
<tr>
<td>Ando, Seiichi</td>
<td>Morphological Analysis of Neural Tube Defects in Non-Obese Diabetic (NOD) Mouse Embryos. 31(1): 23</td>
</tr>
<tr>
<td>Aoyama, Hiroaki</td>
<td>Bronchial Branching Abnormalities and Emphysema-Like Changes in Mutant Rats Having Congenital Lobation Anomalies in the Lung. 33(4): 379</td>
</tr>
<tr>
<td>36(1): 21</td>
<td></td>
</tr>
<tr>
<td>Arai, Yasumasa</td>
<td>36(1): 35</td>
</tr>
<tr>
<td>Asai, Toshi</td>
<td>34(2): 89</td>
</tr>
<tr>
<td>Asano, Yuzo</td>
<td>34(1): 113</td>
</tr>
<tr>
<td>Atasu, Metin</td>
<td>40(3): 169</td>
</tr>
<tr>
<td>B</td>
<td>Introductory Remarks. 32(Suppl): S67</td>
</tr>
<tr>
<td>Baba, Satoshi</td>
<td>40(2): 123</td>
</tr>
<tr>
<td>Baeder, Christian</td>
<td>Chou, Ming-Jen</td>
</tr>
<tr>
<td></td>
<td>Christian, Mildred S.</td>
</tr>
<tr>
<td></td>
<td>32(2): 117</td>
</tr>
<tr>
<td></td>
<td>Clark, Robert L.</td>
</tr>
<tr>
<td></td>
<td>37(2): 165</td>
</tr>
<tr>
<td></td>
<td>Clark, Ruth</td>
</tr>
<tr>
<td></td>
<td>37(2): 165</td>
</tr>
<tr>
<td></td>
<td>Cohen, M. Michael, Jr.</td>
</tr>
<tr>
<td></td>
<td>Perspectives on Studies of</td>
</tr>
<tr>
<td>Cappon, Gregg D.</td>
<td>39(1): 13</td>
</tr>
<tr>
<td>Chen, Shen-Fang</td>
<td>31(1): 41</td>
</tr>
<tr>
<td>Chia, H.P.</td>
<td>36(2): 57, 36(3): 210</td>
</tr>
<tr>
<td>Chiba, Katsushi</td>
<td>The Timing of Appearance of Ossification Centers of Carpal and Tarsal Bones in Mouse Newborns. 35(2): 189</td>
</tr>
<tr>
<td>Cho, Ja-Yeon</td>
<td>Inauguration of the Korean Congenital Anomalies Society. 38(4): 359</td>
</tr>
</tbody>
</table>
Reproductive Outcome in Developing Countries. 40(Suppl): S70

Czeizel, Andrew E.

A Population-Based Case Control Teratological Study of Three Parenteral Penicillins G. 39(3): 117
39(1): 37, 39(4): 253

Feuston, Maureen H.
Fialkowsk, Olaf
Fofana, Djibril

Fujii, Sakiko

Eyelid and Pinnal Development after Maternal Treatment with Cortisone Acetate in NC-eob Mouse Fetuses with a Genetically Determined Open-Eyelid Malformation. 35(3): 293
Immunohistochemical Evaluation of Glucocorticoid Receptors in Developing Eyelids of NC-eob Mouse Fetuses with Genetically Determined Open-Eyelid Malformation. 36(4): 227

D

Daidohji, Syunpei 38(2): 153
Das, Braja Kishore 31(2): 81
Degenhardt, Karl-Heinz 34(3): 157
Deguchi, Takashi 31(3): 153, 33(1): 77
Delhanty, Joy D.A. Preimplantation Diagnosis: Basic Science and Clinical Practice. 38(4): 361
Druga, Alice M. 37(2): 165

Fujii, Toshiyuki 38(2): 153
Fujino, Hidetoshi

Fujino, Hidetoshi 38(2): 157
Fujioka, Hirotaka 31(2): 95
Fujita, Shinya 35(4): 425
Fujita, Yukihiko 35(3): 285
Fukatsu, Nobuko 35(2): 177
Fukiishio, Yonetaka 35(1): 73
Fukui, Yoshihiro 38(1): 25

Application of Stereology to the Central Nervous System: Estimation of numerical Densities of Neurons and Synapses or Neuron Number. 40(1): 1, 40(2): 99

Endo, Akira 35(2): 189
Esaki, Masakazu 33(4): 399
Eto, Kazuhiro 31(3): 153, 32(2): 105
Eto, Yoshikatsu 40(4): 282

Fukui, Yuko 33(2): 143
Fukumura, Masao

Methamphetamine-Induced Neurotoxicity in Rats: Effects on Neostriatal Monoamines and Glial Fibrillary Acidic Protein. 39(1): 13

F

Faqi, Ali S. Determination of the No-Effect Dose of Bis(Tri-N-Butyltin) Oxide (TBTO) for Maternal Toxicity and Teratogenicity in Mice. 37(3): 251

Fukunaga, Kazumi
Fukunishi, Katsuhiko

Collaborative Behavioral Teratology Study of Phenytoin:
A Test Battery for Neurobehavioral Developmental Toxicity in Rats. 38(2): 117, 153

Fukushima, Yoshimitsu
Pitfalls of Chromosome Analysis. 40(2): 131

Fumero, Silvano
32(Suppl): S69

Funahashi, Atsushi
Immunohistochemical Examination of Developmental Brain Defects. 32(4): 323
Vasoactive Intestinal Polypeptide-Containing Neurons and Processes in the Developing Hippocampus of Rats Prenatally Exposed to Methylazoxymethanol Acetate. 35(1): 113

Furuno, Masaru
31(4): 323

G
Genschow, Elke
40(Suppl): S8

Gericke, Christine
40(Suppl): S94

Gilbert, Enid F.
32(1): 65

Goto, Haruko
35(2): 231, 36(4): 257

Goto, Takahiro
35(4): 425

Goto, Takeshi
33(4): 363

Goto, Toshihiro
36(4): 235

Granath, Jane
38(1): 9

Guittin, Pierre
37(2): 165

H
Haga, Hiromi
40(2): 99

Hakamata, Yoji
31(4): 305, 32(3): 167

Hakuba, Akira
36(4): 243

Hamada, Hiroshi
32(3): 179

Hamada, Minoru

Hanada, Satoshi
38(2): 153

Hanai, Atsuko
BUS/Idr, a Mutant Mouse Strain Exhibiting Abnormal Behaviors: Behavioral Similarities of BUS Mice and Chemically Labyrinthectomized Mice. 35(4): 467, 107

Hanato, Takashi
40(3): 157

Handa, Jun
36(1): 35

Hara, Hiroaki
Simple Methods for Objective Assessment of Sperm Viability and Motility with MTT and Sperm Quality Analyzer (SQA) in Rats. 35(4): 477

Harada, Kensuke
35(3): 285

Harazono, Akira
40(Suppl): S108

Harding, Antony J.
Retardation of Prenatal Brain Growth of Guinea Pigs by Disulfiram. 33(3): 197

Harianto, Agus
Micrencephaly in Rats Caused by Maternal Hyperthermia on Days 13 and 14 of Pregnancy. 33(3): 203

Harumi Tanaka
35(4): 411

Hasegawa, Kenichi
Prenatal Tobacco and Maldevelopment of the Brain. 37(1): 15

Hasegawa, Yasuhiro
32(2): 167

Hasegawa, Yasunari
35(1): 73

Hashimoto, Hiroshi
35(2): 115

Hashimoto, Ryozo

Hashimoto, Ryoyo
The Pathogenesis of Anorectal Malformation Induced by All-trans Retinoic Acid in Mice. 33(2): 133

Hatakenaka, Noriyuki

Hashimoto, Ryuju
Pathogenesis of Congenital Diaphragmatic Hernia Induced by Transplacental Infusion of Bisdiamine into Rats. 38(2): 143

Hashimoto, Yutaaka
Congenital Diaphragmatic Hernia: Experimental Approach. 39(2): 75

Hatta, Toshihisa
31(3): 141, 38(3): 259

Hattori, Tatsuo
35(2): 223

Hayakawa, Kunio
Effects of the Ay Gene on the Sensitive Periods of Hydrocortisone-Induced Cleft Palate and Palatal Slit in Mice. 32(4): 373

Hayama, Toyoaki
31(3): 141, 37(1): 31

Hayakawa, Kunio
33(4): 399

Hayakawa, Kunio
Participation of Neural Crest Cells in Cardiovascular Morphogenesis of Chick Embryos. 31(1): 1

Harada, Kensuke
31(2): 89

Harazono, Akira
31(4): 323, 32(4): 357,
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
<th>Affiliation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayashi, Kazuhiko</td>
<td>37(3): 241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igarashi, Shin-ichi</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igarashi, Yo</td>
<td>35(4): 477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igawa, Hiroharu H.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ihara, Toshio</td>
<td>31(1): 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henwood, Susan M.</td>
<td>37(2): 165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hideo Nishimura</td>
<td>36(2): 53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higami, Yoshikazu</td>
<td>38(1): 57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirahara, Fumiki</td>
<td>40(Suppl): 576</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirakawa, Masahiko</td>
<td>34(1): 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirokawa, Kaoru</td>
<td>32(4): 301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hironaka, Naoyuki</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho-Chul, Shin</td>
<td>34(1): 139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoar, Richard M.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ikeda, Takayoshi</td>
<td>31(3): 107, 38(1): 57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ikegawa, Sunao</td>
<td>38(2): 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ikemi, Naoki</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoberman, Alan M.</td>
<td>35(1): 123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horie, Shigeaki</td>
<td>38(1): 87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horii, Emiko</td>
<td>36(2): 75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ikeno, Yuji</td>
<td>31(3): 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ikenou, Tsubomu</td>
<td>40(2): 117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horii, Ikuo</td>
<td>35(2): 177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imada, Junji</td>
<td>33(4): 363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imagawa, Tomohiro</td>
<td>38(1): 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imai, Naoko</td>
<td>31(1): 47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imai, Hiroyuki</td>
<td>38(2): 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoshim, Hajime</td>
<td>33(2): 105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imai, Minoru</td>
<td>33(2): 133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hosani, H. Al</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inage, Akihiko</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hosani, H. Al</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inage, Akihiko</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoue, Naohiko</td>
<td>31(1): 47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoue, Tatu</td>
<td>38(2): 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotta, Kei</td>
<td>32(4): 381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inouye, Minoru</td>
<td>33(2): 133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igarashi, Eiki</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irie, Hidekazu</td>
<td>40(1): 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ishigaki, Daisuke</td>
<td>40(Suppl): S34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ishii, Hiroyuki</td>
<td>38(2): 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ishii, Seiichi</td>
<td>33(3): 211, 33(4): 389,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igarashi, Eiki</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ishii, Hiroyuki</td>
<td>38(2): 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaizumi, Kiyoshi</td>
<td>32(3): 179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaizumi, Yoko</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaizumi, Kiyoshi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaizumi, Yoko</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoue, Tatu</td>
<td>38(2): 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inouye, Minoru</td>
<td>33(2): 133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoue, Naohiko</td>
<td>31(1): 47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoue, Tatu</td>
<td>38(2): 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inouye, Minoru</td>
<td>33(2): 133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoue, Naohiko</td>
<td>31(1): 47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoue, Tatu</td>
<td>38(2): 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inouye, Minoru</td>
<td>33(2): 133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaizumi, Kiyoshi</td>
<td>32(3): 179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaizumi, Yoko</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoue, Tatu</td>
<td>38(2): 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inouye, Minoru</td>
<td>33(2): 133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaizumi, Yoko</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoue, Tatu</td>
<td>38(2): 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inouye, Minoru</td>
<td>33(2): 133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoue, Naohiko</td>
<td>31(1): 47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inoue, Tatu</td>
<td>38(2): 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inouye, Minoru</td>
<td>33(2): 133</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ishikawa, Hitoshi
35(4): 447
Ishitou, Yukiko
35(2): 207
Ishizuka, Yasuo
Palatal Slit and Cleft Palate in Rats Treated with a Glucocorticoid. 1. Teratogenicity of Dexamethasone. 33(2): 147
35(1): 133
Ismael, Sofyan
35(4): 411
Itusaki, Nobue
31(4): 315
Ito, Minako
37(1): 47
Itokazu, Naoya
38(4): 367
Iwao, Fumiya
31(2): 95
Iwase, Keisuke
31(3): 107
The Distribution of Tenascin in Heart and Cardiovascular Anomalies Induced by Bis-diamine. 38(1): 57
Iwase, Takayuki
38(2): 153
J
Jerrells, Thomas R.
Alterations in the Immune System Associated with Prenatal Exposure to Ethanol. 40(Suppl): S42
Jin, Yuko
35(3): 285
Johnson, E. Marshall
K
Kadri, Naru
Congenital Malformations and Deformations in Provincial Hospitals in Indonesia. 35(4): 411
Kageyama, Takashi
39(3): 107
Kajiwara, Yoshifumi
An Autopsy Case of Klippel-Feil Syndrome with Cardiovascular Anomalies and Upper Limb Anomaly. 31(3): 107
Kamei, Takayuki
31(4): 305, 32(3): 167
Kameyama, Yoshihiro
Kamiguchi, Yuihiro
Chromosomally Abnormal Gametes as a Cause of Developmental and Congenital Anomalies in Humans. 34(1): 1
Kamiishi, Hiroshi
33(4): 357
Kamiya, Noriaki
35(4): 425
Kanauchi, Yumiko
Kaneda, Masahiro
Kaneko, Sunao
Kashiwa, Hideo
Katamachi, Ikuo
Katayama, Susumu
Kato, Hiroyuki
Kato, Mitsuhiro
Kato, Tatsuma
Kato, Terushige
Katoh, Chiaki
Katoh, Osamu
Katsuda, Yoko
Kawaishi, Kuniko
Kawamoto, Takayuki
Kawamura, Manami
Kawamura, Nobuyuki
Kawamura, Satoshi
Species Difference in Developmental Toxicity of an N-Phenylimide Herbicide between Rats and Rabbits and Sensitive Period of the Toxicity to Rat Embryos. 35(1): 123
33(2): 167
Kawasaki, Chisato
Kawasaki, Hideya
Behavior of Human Neonates. 34(4): 329
An Autopsy Case of Cyclopia with 13 Trisomy with Special Reference to Histological Abnormalities of the Eyeball. 40(2): 123
Kawauchi, Saju
Kawski, Hiroki
Kihara, Isao
Kikukawa, Keiichiro
Kikuta, Masayuki
Kim, Eun Kyung
Kimmel, Carole A.
Kimura, Akiro
Kinoshita, Yuko
Kistler, Andreas
Kitagawa, Hiroshi
Kitagawa, Teruo
34(1): 183, 35(1): 93
34(4): 321, 34(4): 345,
40(Suppl): S25, 36(3): 107
31(4): 305, 32(3): 167
39(1): 31
Lethal Multiple Pterygium Syndrome with Complete Intestinal Duplication. 34(1): 27
Rib Defects and Pattern Formation of the Thoracic Wall Muscles. 33(2): 105
32(2): 105
Kito, Yoshie 31(3): 153
Identification of Mutations in the Gene Encoding the Fibroblast Growth Factor Receptor 3 in Japanese Patients with Achondroplasia. 35(2): 231
Kuroda, Satoshi
Kuroki, Yoshikazu
Kusama, Tomoko

Kitoh, Hiroshi
Kutlu, Abdurrahman
Kuwagata, Makiko

Klemm, Martina 40(Suppl): S8

Koba, Hidehiko 40(4): 287

Kobayashi, Takao 40(1): 40, 40(2): 123

Kobayashi, Takashi 34(1): 113

Kochhar, Devendra M. Retinoids and Retinoid Receptors in Teratogenesis, 35(1): 55
Kodama, Akihiko 31(1): 41

Kohsa, Kazuhiro Rare Association of Polysplenia with Anencephaly. 40(3): 175
Lee, Suk Keun

Koizumi, Hirohiko 40(2): 112
Kojima, Natsuki 31(4): 323

Kokue, Ei-ichi 34(1): 139, 31(4): 323

Kondo, Yoko 40(3): 162

Konno, Midori 34(1): 107, 34(1): 175

Kono, Keiichiro 38(4): 367

Kosaka, Masaaki A Rare Case of Unilateral Brachymetatarsia of the 2nd Toe. 33(4): 357

Kosazuma, Tsuneo Susceptibility of Day-12.5 and Day-13.5 Fetal Mouse Palates Cultured in vitro to 5-Fluorouracil and Hydroxyurea. 34(1): 183

In vitro Developmental Toxicity of Aspirin and its Major Metabolites on Cultured Fetal Mouse Palates. 35(1): 93

Kosugi, Isao 37(1): 1, 40(2): 123
Maruyama, Asako

Kouno, Keiichiro 40(2): 112

Kudo, Gen Potentiating Embryotoxicity of Pyrimethamine by Folic Acid in Mice. 34(1): 139
Masaki, Shigeo

Kumazawa, Yoshihiko Development and Disappearance of Wavy Ribs Caused by Azosamide in the Mouse Fetus. 37(3): 241
Masunaga, Ken
Matsubara, Yoshio
Matsuda, Funiko
Matsuda, Makoto

Kurihara, Kunihiko 40(4): 282
Antisense Attenuation of Nestin Accumulation Causes Neural

Kurimoto, Sarina Congenital Humero-Radio-

Matsui, Kohji A.
Mizoguchi, Keiji M Mizutani, Masahiro Mohanty, Chahandamayee

Spontaneous Intrauterine Repairment of Cleft Palate Induced by Amniocentesis in Rats. 31(2): 81

Matsumoto, Aki 35(2): 223
Matsuo, Masatoshi 35(1): 123
Matsuo, Takeshi 31(3): 107, 38(1): 57
Matsuo, Tatsuhiro 35(2): 215
Matsuoka, Rumiko Teratogenic Effect of Tedral (Theophylline, Ephedrine, and Phenobarbital) on Cardiac Development in Chick Embryos. 32(1): 65

Matsuura, Masao 38(2): 153

Matsuzawa, Toshiaki 38(2): 153
Merker, Hans-Joachim 40(Suppl): S94
Mikamo, Kazuya 34(1): 1
Miller, Dennis 39(4): 223
Mimura, Katsutoshi 40(2): 123
Minato, Michiyoshi 33(2): 125, 35(3): 285
Minei, Satomi 32(4): 293
Mitsuoka, Koji 40(4): 277
Miura, Takashi Mechanism of Pattern Formation in Limb Bud Micromass Culture: Possible Relationship with in vivo Pattern Formtation. 40(Suppl): S2

Miura, Takayuki 33(1): 55 Triphalangeal Thumb in the Typical Cleft Hand. 36(2): 75

Miyashita, Nobumoto 35(3): 305
Miyata, Koichiro Induction of Cardiovascular Malformations by Leupeptin in the Rat. 31(1): 41

Moore, Keith L. M Mori, Chisato M Mori, Osamu
Mori, Yoshio Morio, Hiroshi Morita, Jiro Morita, Yoko Morita, Kouko Moriwaki, Kazuo
Moriya, Momoko

Moriya, Tokuharu Moriyama, Akihiko Moriyama, Kenji Mukamoto, Masafumi Murakami, Gen Murakami, Ujihiro Muranaka, Ri-ichi

Murata, Yoshiharu Mustadjab, Immanual Myong, Na He

Campomelic Syndrome Associated with Potter's Syndrome and Cardioesplenic Syndrome. 33(1): 45

Nagahama, Masato Nagao, Tetsuji

N 37(1): 1 37(2): 147

Comparative Susceptibility of a Wild Derived Strain of Mus musculus molossinus and Laboratory Mice to Teratogenesis by Ethynitrosourea. 35(3):
Nakamura, Jun 40(4): 275
Nakamura, Makoto 31(1): 41
Nakamura, Noriko 40(1): 24
Nakamura, Ryogo 33(1): 55
Nakane, Yoshibumi Congenital Anomalies in the Offspring of Epileptic Mothers. 32(4): 309
Nakata, Katsuji 31(4): 285
Nakatsu, Tomoko 36(4): 243
Nakatsuka, Toshio Neurulation in the Human Embryo Revisited. 40(2): 93
Adriamycin, Methyl Japan Pharmaceutical Manufacturers Association (JPMA) Survey on Background Control Methanesulfonate and Retinoic Acid Results in Congenital Defects. 37(1): 21
Acid Results in Congenital Defects. 37(1): 21
Nakayama, Yoshio 31(4): 329
Nakayama, Yoshio 34(1): 113
Narama, Isao 38(1): 67
Naritomi, Kenji Naruse, Ichiro Application of an Original Computerized Database (UR-DBMS) for Diagnosis of the Malformation Syndromes. 38(3): 251
Nagata, Ryoichi The Role of Apoptosis in the Manifestation of Polydactyly and Arhinencephaly in Genetic Mutant Mouse Pdn/Pdn. 34(4): 321
Naito, Hiroshi 34(4): 345
Fetal Laser Surgery ex utero in Mice. 36(3): 107
Nakagawa, Masao Mechanism of Polydactyly Manifestation in Mice and its Extrapolation to Humans. 40(Suppl): S25
Tissue Uptake of EGF Receptor Antisense Oligonucleotides in Organ Culture of Fetal Mouse Palates and their Effects on in vitro Palatogenesis. 40(1): 24
Naruse, Takuji 34(4): 425
Natsui, Makoto Development of Rabbit Whole Embryo Culture during Organogenesis. 31(3): 153
Naya, Masato Effects of N-Acetyl-L-Cysteine on Teratogenicity of 5-Fluorouracil in Mice. 33(1): 77
Nakajima, Hiroo Effects of N-Acetyl-L-Cysteine on Teratogenicity of Cadmium in Mice. 34(1): 125
Nakamori, Kouta Effects of Glutathione and Related Compounds on Teratogenicity of 5-Fluorouracil or Cadmium Hydrochloride in
Nelson, Anamari
32(1): 53
Nelson, B.K.
Developmental Neurotoxicity Assessments: Selecting Exposure Parameters. 32(Suppl): S31
Neubert, Diether
32(Suppl): S69
Ng, Yee-Kong
37(2): 149
Ninomiya, Kunitoshi
40(4): 282
Nishi, Jun-ichiro
38(2): 153
Nishi, Naoki
38(2): 287
Ohata, Kenji
31(2): 89, 36(3): 115
Nishibatake, Makoto
40(2): 117
Ohdo, Shozo
31(1): 1, 31(2): 89
Nishida, Atsuyuki
Relationship between Teratogenic Effects and Tissue Binding Pattern of Concanavalin A in Rat Embryos. 34(1): 113
Ohkubo, Yasutaka
38(2): 153
Ohno, Masaki
31(3): 115, 31(3): 129
Ohsugi, Mami
33(1): 85
Nishiguchi, Tomizo
40(1): 40
Nishijima, Setsuko
40(3): 157
Nishikawa, Toshio
32(1): 65
Nishimura, Hideo
36(1): 1
Nishimura, Masahiko
38(1): 67
Nishimura, Yoshihiko
40(1): 24
Ohta, Ryo
Behavioral Characteristics of Rats Selectively Bred for High and Low Avoidance Shuttlebox Response. 35(2): 223
Nishizuka, Masako
36(1): 35
Nito, Shinji
A New in vitro Screening Method for Teratogens Using Human Embryonic Palatal Mesenchymal Cells. 31(4): 329
Nogami, Hiroshi
Ohtani, Hiroshi
38(1): 57
Nomura, Taisei
Transplacental and Transgenerational Late Effects of Radiation and Chemicals. 40(Suppl): S54
Ohura, Takehiko
35(2): 199
Ohyama, Naoki
34(1): 71
Oka, Ichiro
40(1): 24
Nosaka, Keisuke
32(3): 179
Ohyaa, Nariaki
Ohtani, Kyoichi
Consideration on the Methodology of a Simple and Effective Birth Defect Monitoring System. 40(4): 269
Oda, Sen-ichi
33(2): 133
Ogasawara, Nobuaki
35(2): 231, 36(4): 257
Ogawa, Masamichi
Growth Hormone (GH) Treatment in Achondroplasia. 34(2): 89
Okada, Toshiya
Effects of Maternal Uninephrectomy on the Development of Fetal Rat Kidney with Special Reference to the Proliferative Activity and Epidermal Growth Factor (EGF). 40(4): 275
Ogino, Toshihiko
Clinical Features of Congenital Contractural Arachnodactyly. 33(1): 85
Clinical Features and Operative Findings of Congenital Flexion Deformity of Multiple Digits. 33(4): 389
Congenital Anomalies of the Elbow Joint: Clinical Features and Classification. 35(4): 447
Classification and Treatment of Congenital Hand Differences. 40(Suppl): S34
Stage-Specific Relationship between Plasma Total and Cerebellar Bilirubin Levels during Early Postnatal Period in Jaundiced Gunn Rats. 31(4): 297
Omori, Hajime 40(2): 123
Omori, Yasue Congenital Malformations in Newborns from Diabetic Mothers. 32(4): 293
Omoto, Miyako New Approach in Behavioral Teratology: Experimental Study on FAS. 33(1): 15
Oneda, Satoru 39(4): 223
Ono, Hiroshi 40(Suppl): S121
Ono, Takao 39(3): 107
Onomura, Toshinobu 31(4): 285
Ooshima, Yojiro Growth Retardation during Organogenesis in Genetically Diabetic Mice, Yellow KK. 31(1): 13
Delayed Maturation of Fetal Lung in Yellow KK Mice. 31(1): 33
Orii, Tadao 35(1): 43
Osamu Hayaishi Memoir. Obituary for Fellow Member, Professor Hideo Nishimura (1912-1995). 36(2): 53
Otani, Hiroki 31(1): 23, 31(3): 141
Congenital Anomaly as One of the Common Diseases during Human Life-Long Development. To commemorate the 40th Annual Meeting of the Japanese Teratology Society. 40(Suppl): S128
Network of Gene Function and its Modification by Environmental Factors and Epigenetic Events in the Formation of Head Structure. 40(4): 251
33(2): 167
32(2): 135
36(4): 235
38(1): 67
P
Padmanabhan, R. Valproic Acid-Induced Congenital Malformations: Clinical and Experimental Observations. 40(4): 259
Pappas, Bruce A. 32(Suppl): S43
Paydak, Ferhan 40(3): 169
Persaud, T.V.N. 40(3): 181
Petere, Judith A. 37(2): 165
Pohl, Ingeborg 40(Suppl): S8
Pu, Cunfeng 39(1): 13
R
Rahman, Mohammed E. 35(2): 189
Raid, Noersida 35(4): 411
Ricciardi, Claudio 32(2): 91, 35(4): 455
Rodier, Patricia M. Critical Periods for Morphologic Assessment. 32(Suppl): S55
Rozenson, Raphael 35(1): 25
S
Saade, D. 39(4): 253
Saito, Keinichi Maldevelopment of Early Chick Embryos Induced by Non-Thermogenic Dose Radio Frequency Radiation at 428 MHz for the First 48 Hours. 35(3): 275
Saito, Nakamichi 40(2): 117
Sakahira, Hiroshi 38(1): 81
Sakamoto, Shouichi 40(Suppl): S76
Sakuragawa, Norio Clinical and Molecular Genetics of Inherited Hydrocephalus. 34(4): 303
Sanaka, Mayumi 32(4): 293
Sanbuissso, Atsushi 38(2): 153
Sasaki, Madoka 35(1): 123
Sato, Masako 36(2): 65, 37(1): 21
Sato, Toshio J. Analysis of Palatogenesis in the Mouse with Exencephaly Induced by Cadmium Chloride. 34(1): 53
34(1): 71
Satoh, Keiichirou Ameliorative Effect of Folic Acid on Pyrimethamine Teratogenesis in Pigs. 31(4): 323
Satow, Yukio 31(1): 47
Radiation-Induced Anomalies: Report of a Study Conducted in
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Volume(Issue): Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sawada, Kazuhiko</td>
<td>Ataxic Mutant Mice with Defects in Ca2+ Channel a1A Subunit Gene: Morphological and Functional Abnormalities in Cerebellar Cortical Neurons.</td>
<td>40(2): 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35(1): 112</td>
</tr>
<tr>
<td>Schardein, James L.</td>
<td>Behavioral Testing in the Context of Reproductive and Developmental Toxicity Screening in the West.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40(2): 133</td>
</tr>
<tr>
<td>Scholz, Gabriele</td>
<td></td>
<td>32(1): 15</td>
</tr>
<tr>
<td>Schumacher, Gert-Horst</td>
<td></td>
<td>40(Suppl): S8</td>
</tr>
<tr>
<td>Schweinfurth, Hermann</td>
<td></td>
<td>37(1): 1</td>
</tr>
<tr>
<td>Sekimoto, Hiroshi</td>
<td>Developmental Analysis of Chlorambucil-Induced Occipital Blebs in Mice.</td>
<td>37(1): 31</td>
</tr>
<tr>
<td>Sekiya, Kiminori</td>
<td></td>
<td>38(2): 153</td>
</tr>
<tr>
<td>Sergi, Consolato</td>
<td></td>
<td>40(1): 32</td>
</tr>
<tr>
<td>Sheikh, Aleemuzzaman</td>
<td></td>
<td>33(2): 125</td>
</tr>
<tr>
<td>Shimada, Masami</td>
<td>A Case Report of Lethal Multiple Pterygium Syndrome.</td>
<td>33(2): 125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35(3): 285</td>
</tr>
<tr>
<td>Shimazu, Hiroshi</td>
<td>Inherited Skin Diseases: DNA-Based Diagnoses and Prenatal Diagnoses.</td>
<td>33(4): 363</td>
</tr>
<tr>
<td>Shimizu, Hiroshi</td>
<td></td>
<td>34(1): 47</td>
</tr>
<tr>
<td>Shimizu, Meimi</td>
<td></td>
<td>32(4): 293</td>
</tr>
<tr>
<td>Shimizu, Naoko</td>
<td></td>
<td>39(4): 261</td>
</tr>
<tr>
<td>Shimoda, Minoru</td>
<td></td>
<td>32(4): 357, 32(4): 367</td>
</tr>
<tr>
<td>Shimokawa, Isao</td>
<td></td>
<td>31(3): 107, 38(1): 57</td>
</tr>
<tr>
<td>Shimozawa, Nobuyuki</td>
<td></td>
<td>35(1): 43</td>
</tr>
<tr>
<td>Shinmura, Yuichiro</td>
<td></td>
<td>37(1): 1</td>
</tr>
<tr>
<td>Shiota, Kohei</td>
<td></td>
<td>31(1): 33</td>
</tr>
<tr>
<td>Shirai, Mitsuyuki</td>
<td></td>
<td>40(2): 133</td>
</tr>
<tr>
<td>Shirotawa, Yoshiko</td>
<td></td>
<td>33(2): 143</td>
</tr>
<tr>
<td>Shirota, Mariko</td>
<td></td>
<td>36(2): 65, 37(1): 21</td>
</tr>
<tr>
<td>Shoji, Ruyjiro</td>
<td></td>
<td>35(4): 467</td>
</tr>
<tr>
<td>Shuto, Katsuchiko</td>
<td></td>
<td>34(1): 125</td>
</tr>
<tr>
<td>Singh, Gajendra</td>
<td></td>
<td>31(2): 81</td>
</tr>
<tr>
<td>Smith, Murray</td>
<td></td>
<td>32(1): 53</td>
</tr>
<tr>
<td>Soares, Sergio Branco, Junior</td>
<td></td>
<td>40(3): 179</td>
</tr>
<tr>
<td>Soberian, Sonya K.</td>
<td></td>
<td>37(2): 165</td>
</tr>
<tr>
<td>Somiya, Hiroaki</td>
<td></td>
<td>34(1): 47</td>
</tr>
<tr>
<td>Song, Sang Yong</td>
<td></td>
<td>34(1): 47</td>
</tr>
<tr>
<td>Sonoda, Tohru</td>
<td></td>
<td>30(2): 89</td>
</tr>
<tr>
<td>Solomon, Howard M.</td>
<td></td>
<td>37(2): 165</td>
</tr>
<tr>
<td>Sodium Valproate-Induced Cardiovascular Abnormalities in the Jcl:ICR Mouse Fetus.</td>
<td>31(2): 89</td>
<td></td>
</tr>
<tr>
<td>Carbamazepine-Induced Cardiovascular Abnormalities in Chick Embryos.</td>
<td>36(3): 115</td>
<td></td>
</tr>
<tr>
<td>Weight Reduction in Chick</td>
<td></td>
<td>40(2): 93</td>
</tr>
</tbody>
</table>
Embyos. 38(4): 367
Increasing Incidence of Congenital Heart Disease in Patients with Down Syndrome.
40(2): 112

Sonta, Shin-ichi
Mechanism of Malsegregations at Meiosis: Premature Centromere Separation and Precocious Division in Female Chinese Hamsters Stimulated with Gonadotropic Hormones.
40(3): 162

Sonta, Shinichi
39(3): 107

Sorensen, H.T.

Spielmann, Horst
The Use of Transgenic Embryonic Stem (ES) Cells and Molecular Markers of Differentiation for Improving the Embryonic Stem Cell Test (EST). 40(Suppl): S8

Stazi, Anna Velia
Significance of the Minor Alterations of the Axial Skeleton in Rat Foetuses. 32(2): 91

Stazi, Anna Velia
35(4): 455

Sugihara, Hajime

Sugimoto, Hajime
33(4): 357

Sugimoto, Tohru

Sugimoto, Yoshihiro
33(3): 211, 35(4): 447

Sugioka, Kozo
A Developmental Study of Reflex and Activity in Rats with Microcephaly Induced Prenatal Metylationoxymethanol Acetate (MAM) Treatment.
32(2): 143

Sugitou, Tetsuyuki
33(4): 399

Sugiyama, Kohachiyo
Consultation System for Congenital Malformation Syndrome. 33(4): 337

Suh, Yeon-Lim
33(2): 157

Sullivan, Frank
32(Suppl): S69

Sumida, Hiroshi
Ultrastructure of the Adenohypophysis in a Case of Cyclopaia.
31(1): 47

Effects of Serum to Cushion Mesenchymal Cell Migration of the Developing Chick Heart in vitro. 35(2): 207

Effects of Bis-diamine to Cardiac Mesenchymal Cell Migration of the Chick Embryo. 35(2): 215

Sumida, Hiroyuki
Sex Differences in the Rat

Sumiyoshi, Yoshio

Studies on the Frequency of Congenital Malformations in Japan and Asian Countries. 40(Suppl): S76

Sun, Xuc-Zhi
40(2): 108

38(1): 25

Suryonao, Achmad
Suzuki, Hideaki
Suzuki, Hiroetsu

35(4): 411
40(4): 282
31(4): 305

Moorin: In Memory of Professor Hideki Yamamura.
38(3): 271

Reduced Fertility in Female Homozygotes for hgn (Male Hypogonadism) Selected by hgn-Associated Hypoplastic Kidney. 32(3): 167

Suzuki, Katsushi
Genetic Analysis and Histology of Hypoplastic Kidneys in the Male Hypogonadic Mutant (hgn/hgn) Rat. 31(4): 305
32(3): 167, 35(3): 275
32(4): 293

Suzuki, Natsuko
Suzuki, Yasuyuki

Inborn Errors of Peroxisome Biogenesis and Brain Malformation: Clinical and Biochemical Studies. 35(1): 43

Suzumori, Kaoru
Molecular Genetic Techniques for Prenatal Diagnosis. 34(1): 161

Suzumura, Kinya
Behavioral Characteristics of the Mentally Retarded with Arithmetic Tasks: From a Special Education Point of View. 34(4): 311

Tabacova, Sonia

Issues of Human Exposure to Agents Causing Developmental Toxicity. 32(Suppl): S21

Tachibana, Toshiaki
Tachihira, Toshihiko
Tachikura, Toshio

38(2): 117
34(4): 353
31(1): 41

Tahara, Atushi
34(1): 139
<table>
<thead>
<tr>
<th>Authors</th>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takada, Masaaki</td>
<td>33(2): 125, 35(3): 285</td>
<td>Takizawa, Tatsuya Talsness, Chris</td>
</tr>
<tr>
<td>Takagi, Junichi</td>
<td>40(2): 112</td>
<td>Studies. 35(2): 177</td>
</tr>
<tr>
<td>Takagi, Toshi N.</td>
<td>38(1): 87</td>
<td>33(2): 143</td>
</tr>
<tr>
<td>Takagishi, Yoshiko</td>
<td>31(4): 297</td>
<td>The Effects of Low and High Doses of Bisphenol A on the Reproductive System of Female and Male Rat Offspring. 40(Suppl): S94</td>
</tr>
<tr>
<td></td>
<td>40(Suppl): S34</td>
<td>Tamaru, Masao Neurochemical Correlates of Learning Impairment in Microencephalic Rats Induced by Methylazoxymethanol Acetate. 34(1): 13</td>
</tr>
<tr>
<td>Takano, Tomoyuki</td>
<td>Experimental Hydrocephalus in Suckling Hamster Induced by Myxovirus Infection: I. Pathogenesis of Hydrocephalus Caused by Mumps Virus. 31(3): 115</td>
<td>Tamura, Mitsutoshi Tan, K.L.</td>
</tr>
<tr>
<td></td>
<td>32(4): 301</td>
<td>Congenital Hydrocephalus: Role of Transplacental Myxovirus Infection. 35(1): 15</td>
</tr>
<tr>
<td>Takasuki, Yoshinari</td>
<td>32(4): 301</td>
<td>Tanaka, Osamu 31(1): 23</td>
</tr>
<tr>
<td>Takashima, Hiromasa</td>
<td>35(3): 305</td>
<td>Tani, Mizuno 38(2): 153</td>
</tr>
<tr>
<td></td>
<td>34(1): 161</td>
<td>Tani, Mizuno 38(2): 153</td>
</tr>
<tr>
<td></td>
<td>33(1): 31</td>
<td>Tani, Mizuno 38(2): 153</td>
</tr>
<tr>
<td></td>
<td>32(4): 381</td>
<td>Tani, Mizuno 38(2): 153</td>
</tr>
<tr>
<td>Takeshita, Kenzo</td>
<td>40(4): 269</td>
<td>Tani, Mizuno 38(2): 153</td>
</tr>
<tr>
<td>Takeshita, Shuji</td>
<td>32(4): 381</td>
<td>Tani, Mizuno 38(2): 153</td>
</tr>
</tbody>
</table>
38(2): 117
Taniuchi, Mikihiro
Pathogenesis of Experimental Lumbosacral Agenesis in Rats. 31(4): 285
Tasaki, Hiroyasu
Diaphragmatic Hernia Induced in Rat Fetuses by Administration of Bisdiamine. 32(4): 347
Tasaki, Hiroyasu
Atioventricular Septal Defect in Rat Fetuses Induced by Administration of Bisdiamine. 33(1): 31
Tashiro, Shinjiro
36(3): 115
Tateno, Hiroyuki
34(1): 1
Tatewaki, Reiko
Mouse Embryo Culture for Chromosome Analysis. 32(1): 31
Tatsuya Takizawa,
Transplacentally-Administered Enalapril Inhibits the Spontaneous Constriction of the Ductus Arteriosus in the Newborn Rat. 34(1): 47
Tawuchi, Moriyuki
33(2): 125
Tai, Samuel Sam-Wah
37(2): 149
Taylor, Rosanne
38(1): 9
Tchajunosova, Nailya
35(1): 25
Terada, Yoshiki
38(2): 117
Teramoto, Shoji
3-Chloro-4-(Dichloromethyl)-5-Hydroxy-2(5H)-Furanone (MX) as a Direct-Acting Teratogen in Micromass in vitro Tests. 39(1): 31
Tetsuo, Tamaki
32(4): 293
Toda, Shuji
40(3): 175
Tokunaga, Naoki
40(2): 123
Tsuchiya, Toshie
Micromass Culture of Midbrain Cells and its Relevance to in vitro Mechanistic Studies. 32(2): 105
Tsuji, Keiichiro
35(4): 467
Tsukada, Sadao
Clinical Aspects of Cleft Lip and Cleft Palate Patients Treated at Kanazawa Medical University Hospital from 1974 to 1993. 33(4): 345
Tsukumotu, Mari
FGFR2 Mutation and Genotype-Phenotype Analysis in Eight Japanese Patients Associated with Apert Syndrome. 40(4): 282
Tsunematsu, Kunitoshi
Effect of Folic Acid on Pharmacokinetics of Pyrimethamine in Rats. 32(4): 357
Correlation of Active Folate Availability with Effects of Folic Acid on Pyrimethamine Teratogenesis in Rats. 32(4): 367
Tsuno, Tatsuya
35(4): 477
Tsutsui, Yoshihiro
Con genital Infection and Disorders of Brain Development: With Special Reference to Congenital Cytomegalovirus Infection. 37(1): 1
40(1): 40, 40(2): 123
Turhan, A. Buelent
Dermatoglyphic Findings in Congenital Clubfoot. 40(3): 169
U
Uchida, Takashi
Symbrychydactyl of the Foot Associated with Absence of the Contralateral Pectoralis Major Muscle. 34(1): 175
38(1): 67
Uehara, Masato
Uehara, Shigeki
Uehara, Yutaka
Ukita, Katsuo
Lack of Constrictive Effects of Cocaine on the Fetal Ductus Arteriosus in the Rat. 33(2): 143
Ulbrich, Beate
32(Suppl): S69
Umeda, Takashi 33(4): 399
A Study on the Growth and Development of the Cranial Base in the Japanese Unilateral Cleft Lip and Palate: Comparison with the Japanese Skeletal Class I Occlusion. 35(2): 169
Orthodontic Morphological Evaluation of Treacher Collins Syndrome. 39(4): 243

Unos, Masaaki 35(1): 15
Tight Junctional Damage in Experimental Mumps-Associated Hydrocephalus. 37(2): 157

Upfold, Jeffrey Effects of Maternal Hyperthermia on the Developing Guinea-Pig Eye. 32(1): 53

Usami, Masayoshi 35(4): 477
Uwabe, Chigako 36(4): 243

V
Visan, Anke 40(Suppl): S8
Vorhees, Charles V. 39(1): 13
Vukov, Mircho 32(Suppl): S21

W
Wada, Azusa 33(2): 147
Induction of Congenital Malformations in Mice by Paternal MethylNitrosourea Treatment. 34(1): 65

Walsh, David Antony Heat Shock Proteins in Normal and Stressed Mammalian Embryonic Development. 38(1): 9
40(3): 179

Watanabe, Chiaki 33(2): 147
Palatal Slit and Cleft Palate in Rats Treated with Glucocorticoids. II. Comparative Teratogenicity of Prednisolone, Triamcinolone Acetonide and Hydrocortisone. 35(1): 133

Watanabe, Takanori 38(1): 81
Watanabe, Toshiaki Effects of Acetazolamide on the Development of Mouse Limb Buds in vitro. 35(1): 101

Waugh, Patrick 36(1): 7
Webster, William S. The Interpretation of Results from Teratology and Reproductive Toxicity Tests Including Comments on the New Draft

Weisenburger, W.P. 32(1): 15
Weissinger, Judi

Winking, Heinz 33(1): 63
Wise, L. David

X
Xu, Gui-Qin Nutritional State and Cathecolamine Metabolism in Macular Mice. 34(4): 353

Y
Yajima, Akira 38(1): 81
Yamada, Atsushi 35(4): 425
Yamada, Tsutomu 35(2): 125

Yamadori, Takashi 32(2): 143
Yamaguchi, Toshio 35(2): 169
Yamamoto, Keichi 34(4): 337
Yamamoto, Takashi 39(4): 223
Yamamoto, Yoshiko The Teratogenicity of Methamphetamine Is Influenced by Housing Conditions of Pregnant Mice. 34(4): 337

Yamamoto, Yuhei 31(2): 95
Yamamura, Hideki 31(4): 297, 33(2): 133

38(3): 271, 39(1): 1

Yamasaki, Shunsuke 40(2): 112
Yamashita, Keisuke 38(1): 87
Yamashita, Takumi 36(1): 35

Yamawaki, Yasushi Long-Lasting Effect of Maternal Hyperphenylalaninemia during Pregnancy on Postnatal Brain Development of Mice: Biochemical and Morphological Studies. 35(2): 199

Yasuda, Mineo 32(4): 381, 33(1): 77,
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Volume</th>
<th>Issue</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33(4): 363</td>
<td>Variations in Palatal Rugae in Near Term Fetuses from Untreated Jcl:ICR Mice</td>
<td>Yonemitsu, Nobuhiro</td>
<td>40(3)</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>38(1): 87</td>
<td>Variant Patterns of Palatal Rugae Induced by Chemicals in Mouse Fetuses</td>
<td>Yoshimura, Shinsuke</td>
<td>39(4): 295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38(2): 153</td>
<td>Yokota, Kazuko</td>
<td>Yoshioka, Takafumi</td>
<td>31(3): 141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35(2): 151</td>
<td>Congenital Anomalies Induced by Toxoplasma Infection.</td>
<td>Yuki, Tsunetsugu</td>
<td>36(4): 263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32(3): 179</td>
<td>Yonamine, Kyoko</td>
<td>Zhu, Xiao-Ou</td>
<td>38(1): 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>